Pyrogenic Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon and Stocks
نویسندگان
چکیده
Pyrogenic carbon (PyC) is considered one of the most stable components in soil and can represent more than 30% of total soil organic carbon (SOC). However, few estimates of global PyC stock or distribution exist and thus PyC is not included in any global carbon cycle models, despite its potential major relevance for the soil pool. To obtain a global picture, we reviewed the literature for published PyC content in SOC data. We generated the first PyC database including more than 560 measurements from 55 studies. Despite limitations due to heterogeneous distribution of the studied locations and gaps in the database, we were able to produce a worldwide PyC inventory. We found that global PyC represent on average 13.7% of the SOC and can be even up to 60%, making it one of the largest groups of identifiable compounds in soil, together with polysaccharides. We observed a consistent range of PyC content in SOC, despite the diverse methods of quantification. We tested the PyC content against different environmental explanatory variables: fire and land use (fire characteristics, land use, net primary productivity), climate (temperature, precipitation, climatic zones, altitude), and pedogenic properties (clay content, pH, SOC content). Surprisingly, soil properties explain PyC content the most. Soils with clay content higher than 50% contain significantly more PyC (>30% of the SOC) than with clay content lower than 5% (<6% of the SOC). Alkaline soils contain at least 50% more PyC than acidic soils. Furthermore, climatic conditions, represented by climatic zone or mean temperature or precipitation, correlate significantly with the PyC content. By contrast, fire characteristics could only explain PyC content, if site-specific information was available. Datasets derived from remote sensing did not explain the PyC content. To show the potential of this database, we used it in combination with other global datasets to create a global worldwide PyC content and a stock estimation, which resulted in around 200 Pg PyC for the uppermost 2 m. These modeled estimates indicated a clear mismatch between the location of the current PyC studies and the geographical zones where we expect high PyC stocks.
منابع مشابه
Soil Organic Carbon Stocks and Nitrogen Content Comparison in Different Slope Positions in Native Grasslands and Adjacent Cultivated Soils (Case Study: Kermanshah Mountain Rangelands, Iran)
Global warming has been largely driven by increasing atmospheric GHG (Green House Gasses), particularly carbon dioxide caused by fossil fuels burning. The current trend can not be stopped except by reducing fossil fuel consumption or storing organic carbon in soil or earthchr('39')s biological systems such as forests, rangelands and agricultural systems. This study was conducted to determine th...
متن کاملSoil Organic Carbon Content and Stocks in Relation to Grazing Management in Semi-Arid Grasslands of Kenya
Rangelands cover approximately 85% of Kenya’s land mass and is a major resource for livestock farming with a considerable potential to mitigate climate change, yet these lands are stressed differently by various management. Our study aimed at determining the influence of grazing management systems (rotational, continuous and ungrazed) on soil organic carbon stocks in Yoani ranch located in the ...
متن کاملEstimation of Soil Carbon Sequestration Rate in Steppes (Case Study: Saveh Rudshur Steppes)
Since Renaissance, the natural ecosystems have fallen into a complete state ofdisarray due to the rise in the amount of carbon dioxide. Soil, the unsparing stuff, is one of themajor sources of carbon storage, and plays a paramount role in the global equilibrium ofcarbon as well as carbon sequestration. Given that Iran is benefiting from vast steppes, therate of carbon sequestration in them dese...
متن کاملThe Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)
Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...
متن کاملEstimation of biomass, carbon stocks and soil sequestration of Gowatr mangrove forests, Gulf of Oman
The mangrove forest ecosystem is known to possess a variety of ecosystem services, including high rates of carbon sequestration, storage and mitigating climate change through reduced deforestation. This study was carried out in the mangrove forests of Gowatr Bay, Gulf of Oman during 2017-18 to quantify biomass and carbon stocks of all components of this forest, including live and dead trees, so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016